Hamburger Hamburger Hamburger
Trusted Unified View of Data Across Multiple Locations


Efficiently store data from various OT sources in a centralized location, where it can be securely managed, tagged, organized, and published.

Make Data Agile and Visible within Next-Generation Industrial Data Lakes, Data Hubs and Data Marts.

Watch Video Learn How

Sicher verwaltet, markiert und organisiert

Explore Explore Explore

Funktionen des Lumada Industrial DataOps-Portfolios

IIoT Core
An open and scalable core IoT platform foundation with edge IIoT protocol conversion, API integration, notification alerts and AI/ML applications hosting.
Data Integration and Analytics
Launch Video 2:33 min
Data Integration and Analytics
Ingest, blend, cleanse and prepare ERP, MES, weather, and business application data. Orchestrate data flows anywhere. Pentaho technology delivers the solution.
Data Catalog
Data catalog speeds data discovery for self-service analytics, compliance and data rationalization across your IT and OT data stores and Data Lakes.

“With advance warning of logging activities, our partners on the ground will be able to take appropriate action faster, and potentially save more trees and animals.”

Topher White

CEO and Founder, Rainforest Connection

Read Case Study Read Case Study

What is a Data Lake?

Larger data repositories that provide the greatest ease and largest capacity for storing nearly any type of data format. Data lakes are often the first repository in a data stack, receiving the influx of all raw, semi-structured, and structured data.

Explore All Frequently Asked Questions Explore All Frequently Asked Questions
Why do you need a data lake?

Enterprises gain significant business insights from their data which can be leveraged to get a foothold over their competitors. With the increasing costs of collecting and processing Big Data sets, and to stay ahead, they turn to data lakes.

What is a Data Lake versus a data warehouse?

Data lakes are broader data repository systems with data ingestion as a primary concern over data analysis. Though analytics are developing around data lakes, data lakes are highly inclusive, accepting all data types and supporting all users.

How long does it take to deploy a Data Lake?

The journey to build your data lake could take anywhere from 3 months to implement basic functionality, and up to a year to implement it with advanced analytics and machine learning using a leading cloud provider.

Experience the Power of Lumada DataOps

Meet with an expert to see the full solution functionality including integration, profiling, optimization, and analytics.
{ "FirstName": "Vorname", "LastName": "Nachname", "Email": "Geschäftliche E-Mail", "Title": "Stellenbezeichnung", "Company": "Firmenname", "Address": "Address", "City": "City", "State":"Bundesland", "Country":"Land/Region", "Phone": "Telefon", "LeadCommentsExtended": "Weitere Informationen (optional)", "LblCustomField1": "What solution area are you wanting to discuss?", "ApplicationModern": "Application Modernization", "InfrastructureModern": "Infrastructure Modernization", "Other": "Other", "DataModern": "Data Modernization", "GlobalOption": "Wenn Sie unten „Ja“ auswählen, stimmen Sie dem Erhalt kommerzieller Informationen über Produkte und Dienstleistungen von Hitachi Vantara per E-Mail zu.", "GlobalOptionYes": "Ja", "GlobalOptionNo": "Nein ", "Submit": "Senden", "EmailError": "Must be valid email.", "RequiredFieldError": "This field is required." }
{ "FirstName" : "Bitte geben Sie einen Vornamen ein.", "LastName" : "Bitte geben Sie einen Nachnamen ein.", "Title" : "Bitte geben Sie eine Stellenbezeichnung ein", "Company" : "Bitte geben Sie einen Firmennamen ein", "City" : "Bitte geben Sie eine Stadt ein", "State" : "Bitte geben Sie einen Staat ein", "Country" : "Bitte geben Sie ein Land ein", "Phone" : "Bitte geben Sie eine Telefonnummer ein", "phoneforForm" : "Bitte geben Sie eine Telefonnummer ein", "Email" : "Geben Sie eine gültige geschäftliche E-Mail-Adresse ein" }