
GitOps-Driven Modern Database
Deployment on Hitachi Unified Compute
Platform with OpenShift: An Example Using
OpenShift GitOps to Deploy PostgreSQL

Reference Architecture Guide

MK-SL-267-00
April 2023

© 2023 Hitachi Vantara LLC. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including copying and recording, or stored in a database or retrieval
system for commercial purposes without the express written permission of Hitachi, Ltd., or
Hitachi Vantara LLC (collectively “Hitachi”). Licensee may make copies of the Materials
provided that any such copy is: (i) created as an essential step in utilization of the Software
as licensed and is used in no other manner; or (ii) used for archival purposes. Licensee may
not make any other copies of the Materials. “Materials” mean text, data, photographs,
graphics, audio, video and documents.

Hitachi reserves the right to make changes to this Material at any time without notice and
assumes no responsibility for its use. The Materials contain the most current information
available at the time of publication.

Some of the features described in the Materials might not be currently available. Refer to the
most recent product announcement for information about feature and product availability, or
contact Hitachi Vantara LLC at https://support.hitachivantara.com/en_us/contact-us.html.

Notice: Hitachi products and services can be ordered only under the terms and conditions of
the applicable Hitachi agreements. The use of Hitachi products is governed by the terms of
your agreements with Hitachi Vantara LLC.

By using this software, you agree that you are responsible for:

1. Acquiring the relevant consents as may be required under local privacy laws or
otherwise from authorized employees and other individuals; and

2. Verifying that your data continues to be held, retrieved, deleted, or otherwise processed
in accordance with relevant laws.

Notice on Export Controls. The technical data and technology inherent in this Document
may be subject to U.S. export control laws, including the U.S. Export Administration Act and
its associated regulations, and may be subject to export or import regulations in other
countries. Reader agrees to comply strictly with all such regulations and acknowledges that
Reader has the responsibility to obtain licenses to export, re-export, or import the Document
and any Compliant Products.

Hitachi and Lumada are trademarks or registered trademarks of Hitachi, Ltd., in the United
States and other countries.

AIX, AS/400e, DB2, Domino, DS6000, DS8000, Enterprise Storage Server, eServer, FICON,
FlashCopy, GDPS, HyperSwap, IBM, Lotus, MVS, OS/390, PowerHA, PowerPC, RS/6000, S/
390, System z9, System z10, Tivoli, z/OS, z9, z10, z13, z14, z15, z16, z/VM, and z/VSE are
registered trademarks or trademarks of International Business Machines Corporation.

Active Directory, ActiveX, Bing, Excel, Hyper-V, Internet Explorer, the Internet Explorer logo,
Microsoft, Microsoft Edge, the Microsoft corporate logo, the Microsoft Edge logo, MS-DOS,
Outlook, PowerPoint, SharePoint, Silverlight, SmartScreen, SQL Server, Visual Basic, Visual
C++, Visual Studio, Windows, the Windows logo, Windows Azure, Windows PowerShell,
Windows Server, the Windows start button, and Windows Vista are registered trademarks or
trademarks of Microsoft Corporation. Microsoft product screen shots are reprinted with
permission from Microsoft Corporation.

All other trademarks, service marks, and company names in this document or website are
properties of their respective owners.

GitOps-Driven Modern Database Deployment on UCP with OpenShift 2

https://support.hitachivantara.com/en_us/contact-us.html

Copyright and license information for third-party and open source software used in Hitachi
Vantara products can be found in the product documentation, at https://
www.hitachivantara.com/en-us/company/legal.html or https://knowledge.hitachivantara.com/
Documents/Open_Source_Software.

Feedback
Hitachi Vantara welcomes your feedback. Please share your thoughts by sending an email
message to SolutionLab@HitachiVantara.com. To assist the routing of this message, use the
paper number in the subject and the title of this white paper in the text.

Revision history

Changes Date

Initial release April 17, 2023

Feedback

GitOps-Driven Modern Database Deployment on UCP with OpenShift 3

https://www.hitachivantara.com/en-us/company/legal.html
https://www.hitachivantara.com/en-us/company/legal.html
https://knowledge.hitachivantara.com/Documents/Open_Source_Software
https://knowledge.hitachivantara.com/Documents/Open_Source_Software

Reference Architecture Guide

Executive overview
Addressing the scalability and diversity of contemporary IT infrastructure in hybrid cloud
ecosystems demands advanced automation. GitOps, a powerful framework that unifies
infrastructure and application management by using Git as a centralized single source of truth
for code and configurations, ensures consistency, version control, and efficient sharing across
projects and environments.

Hitachi Unified Compute Platform (UCP) embraces GitOps-based solutions to optimize IT
automation and management for customers, providing a powerful and efficient infrastructure
that enables businesses to thrive in a competitive landscape.

As modern applications operate in complex hybrid multi-cloud environments, adopting GitOps
is essential for streamlined deployment and management. Developers and platform operators
need a clear, manageable process to deploy infrastructure resources, such as database
instances and persistent storage volumes, using a single source of truth. This approach
prevents new silos and confusion while enabling seamless cloud-like service integration,
regardless of location.

Using version control, declarative infrastructure, and automation, GitOps streamlines
deployment, fosters collaboration, and minimizes human error. Ultimately, this approach
boosts business efficiency and continuity.

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 4

This paper demonstrates a GitOps-driven framework for deploying modern databases on a
Hitachi UCP Kubernetes Solution with Red Hat OpenShift. The paper presents an example of
deploying a PostgreSQL database through Kubernetes Operator and Argo CD-based
OpenShift GitOps on top of an OpenShift cluster. The solution also includes the use of
Persistent Volumes (PVs) to store the respective data, which are automatically created by the
Hitachi Storage Plug-in for Containers on Hitachi Virtual Storage Platform (VSP). The paper
describes how the GitOps framework can enable a simple and versatile continuous delivery
pipeline for a modern and flexible database deployment on UCP with OpenShift.

Use case examples – databases across a vast geographical
area

When managing multiple edge locations across a vast geographical area, organizations face
challenges related to edge computing, hybrid cloud, limited field teams, and complex
deployment and management. Real-time analytics and extensive onsite data storage are
crucial in various industries and scenarios. Hitachi UCP and Openshift GitOps can address
these challenges by simplifying deployment, management, and scaling of databases using
the GitOps methodology.

Some real-world scenarios where Hitachi UCP and Openshift GitOps provide exceptional
solutions include:
■ Retail Chains: Ensuring smooth operations and quick decision-making through consistent

database deployment and management across multiple locations.
■ Smart City Infrastructure: Managing traffic, public transportation, and utilities with

immediate data analysis and action.
■ Healthcare: Efficient data access and processing for remote hospitals and clinics to

improve patient care.
■ Manufacturing: Real-time analytics for equipment performance, production metrics, and

quality control at factories and production facilities.
■ Energy and Utilities: Optimizing operations, predicting equipment failures, and managing

resources efficiently for power plants and utility companies.
■ Telecommunications: Monitoring network performance, managing traffic, and optimizing

resources for telecom operators.

Hitachi UCP offers a reliable, flexible, and scalable infrastructure, while Argo CD ensures
consistency, security, and compliance across all sites. This combination is ideal for
organizations requiring real-time analytics and significant onsite data storage capabilities.

Background - GitOps simplifies modern DevOps
Modern applications are often built using a microservices architecture, where the application
is broken down into small, loosely coupled, and independently deployable services. This
approach allows for greater flexibility, scalability, and maintainability. However, many
organizations are still practicing manual tests and deployments that can struggle to keep up
with the fast-paced development and continuous evolution of these applications.

Use case examples – databases across a vast geographical area

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 5

The drawbacks of manual tests and deployments

When performed repeatedly, manual tasks are susceptible to errors and often result in
inconsistencies. This not only consumes valuable IT resources, but also impedes agile and
efficient operations. The following are some of the issues associated with manual testing and
deployment:
■ Accumulation of technical issues because of inadequate code analysis
■ Regression and other issues overlooked until software is in production
■ Anomalies in environment configuration and slow issue resolution
■ Time-consuming and risk-prone deployments

These drawbacks hinder agile operations, waste valuable IT resources, and can negatively
impact the overall software development and service delivery process. By embracing
automation and implementing GitOps practices, organizations can overcome these
challenges and create a more efficient and reliable software development environment.

The rationale for automating manual processes

Contemporary DevOps teams are now embracing continuous integration and continuous
delivery (CI/CD) that employs automation to enable continuous process and software
improvement, streamlining development, testing, and deployment tasks for faster software
iterations.

DevOps engineers use GitOps-based CI/CD tools such as Argo CD to automate
implementation steps across multiple environments while maintaining a single source of truth.
These tools provide reporting capabilities to quickly identify and address discrepancies.

Automation is essential for successful continuous delivery, making processes repeatable,
auditable, and minimizing human error. This consistency allows teams to focus on higher-
value tasks such as feature development and performance optimization.

Embracing automation through continuous delivery and GitOps-based CI/CD tools
streamlines software development, replacing time-consuming manual tasks with efficient,
automated workflows. This leads to enhanced collaboration, improved software quality, and
faster time to market.

Background - GitOps simplifies modern DevOps

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 6

Advantages of GitOps-driven continuous delivery
■ Cost Reduction

GitOps-driven continuous delivery (CD) reduces staff costs by automating manual tasks,
enabling developers and administrators to focus on adding new services and enhancing
service levels, while leveraging Git as the single source of truth.

■ Streamlined Workflows

CD with GitOps promotes efficiency by automating workflows and providing a consistent
version-controlled environment, ensuring tasks are completed uniformly and addressing
DevOps challenges.

■ Operational Confidence and Compliance

By automating processes using GitOps, CD improves operational confidence, service
levels, and regulatory compliance. Git's version control capabilities help mitigate issues
related to user experience and security by providing a traceable and auditable history of
changes.

■ Enhanced Collaboration and Visibility

GitOps-driven CD fosters teamwork by automating labor-intensive tasks and providing
visibility into the entire infrastructure and application development lifecycle. Developers,
integrators, and testers can collaborate more effectively by leveraging Git for change
management and delivering software faster.

What is GitOps?

GitOps is an operational framework that simplifies and automates infrastructure and
application management using Git as the single source of truth. It treats the state of
infrastructure, platform, and applications as code. This allows configurations to be defined as
code that is version controlled in Git, and shared and reused consistently across projects and
environments. Changes to the system are made by updating the Git repository, which makes
them auditable and repeatable. GitOps also supports a declarative approach to infrastructure
and application management. The state is defined up front, and the system converges to that
state automatically, improving reliability.

Background - GitOps simplifies modern DevOps

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 7

GitOps enables organizations to manage their entire infrastructure and application
development lifecycle using a single, unified tool that applies the principles of version control,
collaboration, compliance, and CI/CD to infrastructure automation. By using Git as the single
source of truth to manage all infrastructure files, GitOps simplifies and automates
infrastructure and application management. To perform GitOps operations, infrastructure files
must be checked in to Git or forked from a public repository. With GitOps, organizations can
manage their infrastructure and application development lifecycle using a single, unified tool
that provides version control, collaboration, compliance, and CI/CD capabilities to
infrastructure automation.

What are OpenShift GitOps and Argo CD?

OpenShift GitOps is a continuous delivery tool for managing Kubernetes applications that
uses the GitOps style and is built on top of Argo CD and other tooling. It operates
declaratively, ensuring that the application always runs in its desired state.

Argo CD is a component of the Argo project suite of products that also includes Argo
Workflow, Argo Rollout, and Argo Event. These products help solve specific problems in the
agile development process and make Kubernetes application delivery scalable and secure.
By managing applications and infrastructure as code, developers can automate the
deployment process and enable faster, more reliable delivery.

Use GitOps to simplify modern DevOps

GitOps addresses the challenges of manual testing and deployment processes, replacing
them with efficient, automated workflows that streamline software development, enhance
collaboration, and improve software quality. It simplifies and automates infrastructure and
application management using Git as the single source of truth, providing version control,
collaboration, compliance, and CI/CD capabilities to infrastructure automation.

With tools like OpenShift GitOps and Argo CD, developers can manage their applications and
infrastructure as code, automating the deployment process and enabling faster, more reliable
delivery, while promoting efficiency, operational confidence, and regulatory compliance.

Kubernetes operators

A Kubernetes Operator extends Kubernetes functionality, managing the lifecycle of complex,
stateful applications. It automates and simplifies tasks such as deployment, scaling, and
updates by encoding domain knowledge into software, allowing Kubernetes to treat
applications as native components. See https://kubernetes.io/docs/concepts/extend-
kubernetes/operator/ for more information.

Argo CD passes configurations to Kubernetes operators by applying custom resources,
which contain the desired state and configuration details of the application. The operator's
custom controller detects changes in these resources and takes corrective actions to
reconcile the application's actual state with the desired state, ensuring seamless
management of the application within the Kubernetes environment.

Background - GitOps simplifies modern DevOps

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 8

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

The GitOps-Driven framework on UCP with OpenShift
This paper introduces a versatile GitOps-driven framework that uses Argo CD (OpenShift
GitOps), an open-source Kubernetes operator for databases (with CrunchyData Postgres
Operator as an example), GitHub, Hitachi Virtual Storage Platform (VSP), and Hitachi
Storage Plug-in for Containers to automate and simplify the database deployment process.
PostgreSQL is selected because it is one of the most widely used databases in contemporary
applications and boasts a substantial user base.

The framework uses Argo CD to retrieve configurations from a Git repository, facilitating the
deployment, scaling, and modification of the PostgreSQL database through the CrunchyData
PostgreSQL operator. Simultaneously, the underlying Storage Plug-in for Containers and
VSP automatically allocate and deliver persistent storage volumes for the database,
guaranteeing a dynamic, automated, and streamlined deployment process.

Additionally, this versatile framework can be adapted to accommodate other databases
operating on Kubernetes, establishing itself as a valuable asset for organizations that support
modern data applications with a GitOps methodology.

Crunchy Data’s Postgres Operator

Crunchy Data's Postgres Operator is an open-source project, and you do not need a
subscription to use its core functionality. You can access the source code and documentation
on their GitHub repository (https://github.com/CrunchyData/postgres-operator) and use it
freely to experiment, deploy, manage, and scale PostgreSQL clusters on Kubernetes.

While the Postgres Operator simplifies PostgreSQL cluster management on Kubernetes, by
integrating Argo CD, organizations can benefit from the GitOps approach. Continuous
delivery, streamlined cluster management, enhanced security, and seamless tool integration
make PostgreSQL deployments more efficient, consistent, scalable, and secure.

Hitachi Unified Compute Platform Kubernetes solution and Hitachi Virtual Storage
Platform

To thrive in today’s digital economy, you need a more advanced and reliable IT infrastructure
that can handle processes, and data faster and more efficiently in a secure manner. By
leveraging such a sophisticated infrastructure including Hitachi Unified Compute Platform
(UCP) solution backed by Hitachi Virtual Storage Platform (VSP), you can accelerate
business decisions as well as store/fetch respective data on/from the fastest and the most
secure storage.

The GitOps-Driven framework on UCP with OpenShift

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 9

https://github.com/CrunchyData/postgres-operator

The following are some of the advantages of using Hitachi UCP Kubernetes Solution backed
by VSP storage systems:
■ Improve scalability for growth
■ Maximize data reduction technology
■ Consolidate multiple workloads with confidence
■ Reduce disruption for higher performance
■ Achieve consistent long-term performance

Hitachi Storage Plug-in for Containers

Hitachi Storage Plug-in for Containers integrates Kubernetes with Hitachi storage systems
using the Container Storage Interface (CSI). It enables dynamic provisioning of the virtual
storage software block system, where containers are used to integrate virtual storage
software blocks into Kubernetes-based OpenShift container platform clusters and support
both Kubernetes and Red Hat OpenShift container platforms. Storage Plug-in for Containers
provides persistent volumes from Hitachi storage systems.

Project configuration
This example configuration is deployed and run on top of an OpenShift cluster (version 4.12)
configured with 3 × virtual master nodes and 3 × worker nodes. One of the worker nodes is a
physical node (hh02-worker-3) connected to Hitachi Virtual Storage Platform (VSP) using an
Emulex HBA on a Fibre Channel network.

Hardware configuration

The following table lists the main hardware components.

Hardware Type Configuration Version/Model Quantity

Master Node Virtual 4 × vCPUs

16 GB Memory

120 GB vDisk

VM version 19 3

Worker Node Virtual VM version 19 2

Worker Node Physical Hitachi Advanced Server DS120

128 GB Memory

1 × Emulex HBA

DS120 1

Hitachi Virtual
Storage Platform

Storage 165 TB Physical Capacity VSP 5600H 1

The physical worker node “hh02-worker-3” was connected to VSP 5600H using an Emulex
HBA.

Project configuration

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 10

Software configuration

The following table lists the main software components.

Software Version

Red Hat OpenShift 4.12

Hitachi Storage Plug-in for Containers 3.11

Red Hat OpenShift GitOps 1.7.2

Argo CD 2.5.1

Crunchy Postgres Operator 5.0

Hitachi Storage Virtualization Operating System RF 90-08-41

Project details
Assuming you have access to a functioning OpenShift cluster with internet access, this paper
demonstrates deploying a PostgreSQL database using GitOps methodology. These are the
high-level steps:

1. Install and configure Argo CD.

a. Manually install Argo CD on the OpenShift cluster.
b. Retrieve the Argo CD admin password.
c. Log in to the Argo CD Web UI and configure the settings.

2. Prepare and deploy PostgreSQL by following these steps:

a. Create a repository and connect Argo CD to the repository.
b. Update the Postgres definition file that Crunchy Data’s Postgres Operator will use.
c. Create an Argo CD project.
d. Understand the Argo CD application concept - this is a requirement.

■ An Argo CD application is a Kubernetes custom resource that represents a
group of Kubernetes resources deployed to a cluster.

e. Deploy the Postgres Operator as an Argo CD application.

■ The Postgres Operator is a utility that, once installed, allows DevOps teams to
deploy and manage Postgres databases within the Kubernetes cluster.

f. Create an example Postgres Cluster as an Argo CD application.

■ This example demonstrates creating a Postgres Cluster using the Argo CD
application concept. It simulates a real-world scenario where DevOps teams
create/request databases for their services using a GitOps methodology.

g. Validate the deployment.

3. Monitor the deployment status using the corresponding OpenShift commands.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 11

Install Argo CD (OpenShift GitOps)

You can Install Argo CD from the command line or by installing the OpenShift GitOps
operator available on Red Hat OperatorHub. The Red Hat OpenShift GitOps operator was
installed for this example.

Run the following commands to complete the initial steps for a manual installation of Argo CD
in your OpenShift cluster.

oc create namespace argocd

oc get namespaces | grep argocd

oc apply -n argocd -f https://raw.githubusercontent.com/argoproj/argo-cd/stable/
manifests/install.yaml

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 12

oc get pods -n argocd -w

oc get svc -n argocd

If you chose to install manually, additional steps are required to finish the installation, access
the Argo CD UI, and expose the Argo CD service.

See the Argo CD Getting Started Guide at https://argo-cd.readthedocs.io/en/stable/
getting_started/ for more details.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 13

https://argo-cd.readthedocs.io/en/stable/getting_started/
https://argo-cd.readthedocs.io/en/stable/getting_started/

Note: The default Argo CD user login is admin. The initial password for the admin
account is auto-generated and stored as clear text in the field password as a
secret named argo-initial-admin-secret in the Argo CD installation namespace.

For example, the following command shows the admin password for the OpenShift GitOps
operator that includes the Argo CD instance. There are multiple ways to run a command to
show the Argo CD admin password.

argoPass=$(oc get secret/openshift-gitops-cluster -n openshift-gitops -o jsonpath=’
{.data.admin\.password}’ | based 64 -d)
echo $argoPass

The password can also be retrieved by running the following command (the namespace that
Argo CD installed on it is argocd):

oc -n argocd get secret argocd-initial-admin-secret -o jsonpath=’{.data.admin
\.password}’ | based 64 -d); echo

To complete the initial configuration of Argo CD, log in to its Web UI using the admin
username and the initial password that you acquired earlier.

After logging in, you can deploy and manage applications on your OpenShift cluster through
the Argo CD Web UI.

Configure Argo CD

The stepping stone for configuring Argo CD is connecting to a repository. For example, you
can either create a Git repository and then check in all your files on that repository or you can
fork one of the public repositories to your Git repository.

See Getting started with GitHub at https://docs.github.com/en/get-started for more
information.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 14

https://docs.github.com/en/get-started

Create a repository

For this project, the Crunchy Postgres Operator was forked as a public repository on GitHub.
See https://github.com/CrunchyData/postgres-operator-examples for more information.

To add a repository to Argo CD, complete the following steps:

1. Click Setting from the navigation bar on the left.
2. Click Repositories, and then click + CONNECT REPO.
3. Choose your connection method, for example VIA HTTPS.
4. Provide all the necessary information, and then click CONNECT.

The Git repo is added to Argo CD repository.

(Optional) Cloning to a local repository

If you want to follow the exact steps in this paper, we recommend cloning or forking the
Crunchy Postgres Operator in your own Git repository, either locally or in the cloud. This will
allow you to modify the parameters in the manifest files as needed for your specific use case.

Note: After cloning or forking, remember to connect Argo CD to your repository
for a successful deployment.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 15

https://github.com/CrunchyData/postgres-operator-examples
https://github.com/CrunchyData/postgres-operator-examples

For this scenario, a fork was created from the Crunchy Postgres Operator on github to the
github repository and that repository was cloned to the local OpenShift environment.

Also, this repository was added to the Argo CD repository as well as being cloned to the local
OpenShift environment.

git clone https://github.com/hosseinheidarian/postgres-operator-examples.git

Create a project

Argo CD uses projects to logically categorize applications. To create a project, complete the
following steps:

1. Click Setting.
2. Select Projects.
3. Click +NEW PROJECT.
4. Enter a name and description, and then click CREATE.
5. Add your Git repo to Source Repositories and add the OpenShift cluster (Kubernetes

cluster) to Destination.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 16

https://github.com/hosseinheidarian/postgres-operator-examples

The default project is used for this example.

Understand the Argo CD application concept - this is a requirement.

In Argo CD, an application (Application CRD) is a Kubernetes custom resource that
represents a group of Kubernetes resources deployed to a cluster, usually defined in a Git
repository. It serves as a central unit for managing and deploying those resources. An "Argo
CD application" resource specifies the desired state (declarative) of the resources and their
configuration, as well as the Git repository location and the path where the resource
manifests are stored. Argo CD organizes applications into projects for logical categorization.

Often, Argo CD applications have dependencies on other Argo CD applications, because one
application might rely on services, resources, or configurations provided by another. Typically,
an application will have multiple services and some of those services would require a
database instance. For instance, a web application using data from a database requires the
database to be deployed before it can be used by Argo CD applications.

In our project, we deploy "Crunchy Postgres Operator" and a "Postgres database" as two
separate "Argo CD applications" in the correct sequence. First, we deploy the Crunchy
Postgres Operator, which equips the targeted Kubernetes cluster with the ability to manage
and deploy Postgres databases and their associated resources.

After the Crunchy Postgres Operator is deployed, the Kubernetes cluster can deploy and
manage Postgres databases. Then, we deploy a Postgres database as another "Argo CD
application," ensuring proper dependency management and sequencing.

Before deploying an application, you need to know what the prerequisites and dependencies
are, and how you can customize the deployment process.

Application deployment

1. To deploy an application, click Applications from the navigation bar on the left.

2. Click + NEW APP.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 17

■ Provide a name for the application.
■ Select the project that you created earlier or select the default if you have not created a

project yet.
■ Select application SYNC POLICY OPTIONS.
■ Select PRUNE PROPAGATION POLICY.
■ Under SOURCE:

● Enter the repository URL.
● Select Revision.
● Enter the path to the application definition files.

■ Under DESTINATION:
● Enter the cluster URL. For example, https://kubernetes.default.svc.

● Enter the namespace that the application is going to be deployed on.

You can select or enter more details, based on application requirements. See https://argo-
cd.readthedocs.io/en/stable/getting_started/#6-create-an-application-from-a-git-repository for
detailed instructions.

Deploy the Crunchy Postgres Operator

Complete this procedure to deploy Crunchy Postgres Operator.

1. Update the Postgres definition file.

To create PVs and store Postgres data on Hitachi Virtual Storage Platform (VSP), the
Crunchy Postgres Operator definition file (path: kustomize/postgres) must be updated
and a Storage Class must be added to that file. By adding this storageClass, Storage
Plug-in for Containers will be triggered at the time of deployment, and a persistent
volume with attributes that are configured on the same definition file will be created.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 18

https://argo-cd.readthedocs.io/en/stable/getting_started/#6-create-an-application-from-a-git-repository
https://argo-cd.readthedocs.io/en/stable/getting_started/#6-create-an-application-from-a-git-repository

2. Create a Crunchy Postgres Operator.

At this point you need to create a namespace. You can do it manually by running the
following command, or update the definition file by adding a namespace, or a better
option is to let Argo CD create the namespace for you. In this example Argo CD created
the namespace postgres-operator.

oc create namespace postgres-operator

To create the Crunchy application, follow the steps in the Application deployment
section. The following are the inputs that need to be entered on the create Crunchy

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 19

Postgres Operator application creation page:

■ General

● Application Name: crunchy-postgres-operator

● Project: default

● SYNC POLICY: Automatic

■ PRUNE RESOURCES: Checked

■ SELF HEAL: Checked

■ SET DELETION FINALIZER: Checked

● SYNC OPTION

■ AUTO-CREATED NAMESPACE

■ SERVER-SIDE APPLY

● PRUNE PROPAGATION: foreground

● RETRY: Checked

■ Limit: 2 Duration:5s

■ Max Duration: 3m0s Factor:2

■ Source

● Repository: https://github.com/hosseinheidarian/postgres-operator-example.git

(you will need a GitHub login)

● Path: kustomize/install/default

■ Destination

● Cluster URL: https://kubernetes.default.svc

● Namespace: postgres-operator

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 20

https://github.com/hosseinheidarian/postgres-operator-example.git
https://kubernetes.default.svc

The following is an example Crunchy-postgres-Operator application SUMMARY.

The following is an example Crunchy-postgres-Operator application MANIFEST file.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 21

3. Create a Crunchy Postgres cluster.

To create Crunchy applications, follow all the steps in the application deployment
section. The following are the inputs that are entered on the Create Crunchy Postgres

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 22

Operator application creation page:

■ General

● Application Name: postgres-cluster

● Project: default

● SYNC POLICY: Automatic

■ PRUNE RESOURCES: Checked

■ SELF HEAL: Checked

■ SET DELETION FINALIZER: Checked

● SYNC OPTION

■ AUTO-CREATED NAMESPACE

■ SERVER-SIDE APPLY

● PRUNE PROPAGATION: foreground

● RETRY: Checked

■ Limit: 2 Duration:5s

■ Max Duration: 3m0s Factor:2

■ Source

● Repository: https://github.com/hosseinheidarian/postgres-operator-example.git

(you will need a GitHub login)

● Path: kustomize/postgres

■ Destination

● Cluster URL: https://kubernetes.default.svc

● Namespace: postgres-operator

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 23

https://github.com/hosseinheidarian/postgres-operator-example.git
https://kubernetes.default.svc

The following is an example postgres-cluster SUMMARY.

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 24

The following is an example postgres-cluster MANIFEST file.

4. Validate the deployment.

To verify the Crunchy Postgres Operator and Postgres Cluster deployment, do the
following.

The following command shows you the namespace postgres-operator that was created
by Argo CD.

oc get namespace | grep postgres-operator

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 25

The following command sets the active working namespace to postgres-operator.

oc project postgres-operator

View all created pods.

oc get pods

The following command shows all the available services on namespace postgres-
operator.

oc get svc

List created PVCs on Hitachi VSP by running the following command.

oc get pvc

View hippo instance details.

oc describe pod -n hippo-instance1-bt4m-0

Project details

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 26

We have now successfully deployed a Postgres database using GitOps in a beginner-friendly
manner. With the help of Storage Plug-in for Containers and VSP, persistent volumes used
by the Postgres database were automatically allocated, eliminating the need for manual
intervention. As a result, we have effectively demonstrated a simple GitOps-driven framework
for deploying modern databases on the Hitachi Unified Compute Platform (UCP) Kubernetes
Solution with Red Hat OpenShift.

Conclusion
In summary, this paper demonstrates an example project of the deployment and operation of
a sample configuration on top of an OpenShift Cluster (version 4.12) with three virtual master
nodes and two virtual and one physical worker node, including the physical worker node
connected to Hitachi Virtual Storage Platform (VSP) using an Emulex HBA on a Fibre
Channel network.

The GitOps-driven framework presented in this paper offers a clear and concise methodology
for deploying and managing containerized data applications (specifically PostgreSQL in this
paper) on OpenShift clusters on UCP with Storage Plug-in for Containers and VSP.

References
■ Hitachi Storage Plug-in for Containers

https://knowledge.hitachivantara.com/Documents/Adapters_and_Drivers/
Storage_Adapters_and_Drivers/Containers/Storage_Plug-in_for_Containers

■ Argo CD Getting Started Guide

https://argo-cd.readthedocs.io/en/stable/getting_started/
■ Crunchy Postgres Operator documentation

https://access.crunchydata.com/documentation/postgres-operator/v5/

Conclusion

Reference Architecture Guide
GitOps-Driven Modern Database Deployment on UCP with OpenShift 27

https://argo-cd.readthedocs.io/en/stable/getting_started/
https://access.crunchydata.com/documentation/postgres-operator/v5/

Hitachi Vantara

Corporate Headquarters

2535 Augustine Drive

Santa Clara, CA 95054 USA

HitachiVantara.com/contact

https://www.linkedin.com/company/hitachi-vantara
https://twitter.com/hitachivantara
https://www.facebook.com/HitachiVantara
https://www.youtube.com/user/HDScorp

	GitOps-Driven Modern Database Deployment on UCP with OpenShift
	Reference Architecture Guide
	Executive overview
	Use case examples – databases across a vast geographical area
	Background - GitOps simplifies modern DevOps
	The GitOps-Driven framework on UCP with OpenShift
	Project configuration
	Project details
	Conclusion
	References

